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J. Phys. A: Math. Gen. 19 (1986) 1127-1139. Printed in Great Britain 

Accidental degeneracies and symmetry group of the harmonic 
oscillator in a strong magnetic field 

C Quesnet 
Physique ThCorique et MathCmatique CP229, UniversitC Libre de Bruxelles, Bd. du 
Triomphe, B 1050 Brussels, Belgium 

Received 28 August 1985 

Abstract. The problem of an electron in a general central potential, subject to a constant 
external magnetic field, is known to have no degeneracy and to be invariant under SO(2). 
However, once the central potential has a symmetry group larger than S0(3), even in the 
presence of a magnetic field, residual accidental degeneracies may remain and a symmetry 
group larger than SO(2) may exist. In the present paper, we investigate the case where 
the central potential is a harmonic oscillator and the magnetic field is strong, meaning that 
the Hamiltonian contains both a linear and a quadratic term in the magnetic field intensity 
K In a recent work, Moshinsky er a/  did claim that in such a case no accidental degeneracy 
is left. It is shown here that, although this assertion is valid for most values of 2, there 
exist values for which there are residual accidental degeneracies. The analysis is based on 
a linear canonical transformation converting the Hamiltonian into that of an anisotropic 
oscillator in the absence of magnetic field. It is shown that the accidental degeneracies of 
the latter are either due to an SU(2), an SU(3) or an SU(2) x SU(2) symmetry group, or 
cannot be explained by the existence of any symmetry group. In particular, it is proved 
that accidental degeneracies, and a corresponding SU(2) symmetry group, may appear 
when the frequencies are irrationally related. Finally the accidental degeneracies and the 
associated symmetry group of the isotropic oscillator in a strong magnetic field (when it 
exists) are determined in terms of the ratio between the oscillator and cyclotron frequencies. 

1. Introduction 

In the spectra of some quantum mechanical Hamiltonians, there appear ‘accidental’ 
degeneracies, namely degeneracies larger than those to be expected from the obvious 
geometrical symmetries of the Hamiltonian, such as invariance under rotations in the 
case of central potentials. Two well known examples of such Hamiltonians are those 
of the Coulomb and harmonic oscillator. Some fifty years ago, it was shown by Fock 
(1935), Bargmann (1936) and Jauch and Hill (1940) that the accidental degeneracies 
occurring in those two cases are due to a larger symmetry group than the SO(3) group 
connected with the rotational invariance, namely SO(4) for the Coulomb Hamiltonian 
and SU(3) for the harmonic oscillator Hamiltonian. 

Ever since, much work has been devoted to the search for a larger symmetry group 
responsible for the accidental degeneracies whenever the latter do occur (McIntosh 
1971, Louck et a1 1973a, b, Moshinsky er al1975, Moshinsky and Patera 1975). Despite 
these achievements, it has become clear that accidental degeneracy is not always 
connected with the existence of a symmetry group (Cisneros and McIntosh 1970, Louck 
and Metropolis 1981, Moshinsky 1983, Moshinsky and Quesne 1983). 

t Maitre de recherches FNRS. 

0305-4470/86/071127 + 13$02.50 @ 1986 The Institute of Physics 1127 



1128 C Quesne 

In the present paper, we consider the problem of an electron in an isotropic 
harmonic oscillator potential plus a constant external magnetic field. On the assumption 
that the latter is strong, the Hamiltonian contains both a linear and a quadratic term 
in the magnetic field intensity 2. Apart from its interest to astrophysics, where magnetic 
fields of the order of 10l2 G are observed in the vicinity of pulsars (Smith 1977), that 
problem can also be useful in some earthly applications. Such is the case in the study 
of size effects on the diamagnetic properties of small metallic particles, wherein the 
harmonic oscillator serves to confine the electrons within the small particles (Denton 
1973). To obtain the diamagnetic susceptibility, one indeed needs to calculate the 
level spectrum to the order of %*. 

The problem of a charged particle in a general central potential subject to a constant 
external magnetic field is known to have no degeneracy and to be invariant under 
SO(2). However, once the central potential has a symmetry group larger than S0(3),  
even in the presence of a magnetic field, residual accidental degeneracies may remain, 
and a symmetry group larger than SO(2) may exist. In a recent work, Moshinsky et 
a1 (1984) discussed the case where the central potential is an isotropic harmonic 
oscillator. They considered both the strong field case, and the weak or very strong 
field limits, wherein either only the linear term or the quadratic term in 2 has to be 
taken into account. In the strong field case, they claim that there is no accidental 
degeneracy left, and the Hamiltonian symmetry group therefore reduces to SO(2). 

The purpose of the present paper is to show that although the assertion of Moshinsky 
er a1 is valid for most values of 2, there do exist values for which there are residual 
accidental degeneracies and consequently a more extensive symmetry group than SO(2) 
may be expected. A search for the latter will also be carried out and will lead to the 
conclusion that the accidental degeneracies cannot always be explained by the existence 
of a symmetry group. 

Instead of the cylindrical or spherical coordinates used by Moshinsky et al, we 
shall carry out our analysis in Cartesian coordinates. By means of a linear canonical 
transformation we shall reduce the problem to that of an anisotropic oscillator in the 
absence of a magnetic field. In 2, we begin by solving the two-dimensional problem 
and then outline the analysis of the three-dimensional one. We discuss the accidental 
degeneracies of the three-dimensional anisotropic oscillator in 9 3, and search for the 
corresponding symmetry group in § 4; Finally, in § 5, we apply the results of the 
previous sections to the three-dimensional isotropic oscillator in a strong magnetic field. 

2. The solution of the two-dimensional problem and its extension to three dimensions 

Let us consider a non-relativistic electron of mass M and charge -e, moving in a 
two-dimensional isotropic oscillator potential of frequency R in the xlx2 plane, and 
subjected to a constant external magnetic field &' along the x3 axis. In terms of the 
coordinates and momenta in standard units xy, p : ,  i = 1,2, the Hamiltonian of the 
electron reads 

2 2 

, = I  t = l  
H"=(1/2m)  [ p ~ + ( e / c ) A : ] * + f m R '  (x : )~  

where in the symmetrical gauge 

A" = +&' x XI'. (2.2) 
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If we denote by xi ,  p i ,  H' the coordinates, momenta and Hamiltonian in atomic units, 
i.e. 

x i=  (me2 /  f i2 )x ;  p i  = ( f i / m e 2 ) p :  H ' =  ( f i 2 / m e 4 ) H "  (2.3) 

equation (2.1) becomes 
2 

H'=f  [ P ~ ~ + ( ~ ~ + E ~ ) X ; ~ ] +  b 2 ( x i p : - x ; p ; ) .  
n = I  

(2.4) 

Here b2 and E' are dimensionless constants, respectively defined by 

b2 = f i3X/2m2ce3  and E' = f i3R/me4 .  (2.5) 

The Hamiltonian H', being quadratic in the coordinates and momenta, can be 
transformed via the linear canonical transformation (Dulock and McIntosh 1966, 
Moshinsky and Winternitz 1980, Schuh 1985) 

xi  = ( b 4 +  E ~ ) - ' / ~ ( X ~  - p 2 ) / f i  p i  = ( b 4 +  ~ ~ ) ) " ~ ( x ~ + p ~ ) / f i  
(2.6) 

into the Hamiltonian of a two-dimensional anisotropic oscillator in appropriate units 

x:  = ( b4 + E ~ ) - " ~ (  x2 - p l ) / f i  p :  = (b4+ E ~ ) ~ / ~ ( x ,  + p 2 ) / d 7  

2 
H = ( b 4 +  E ~ ) - ' / ~ H '  = C wit( p f +  x i ) .  

i = l  

The frequencies of the latter are given by 

where a is a dimensionless parameter defined by 

a = b2(  b 4 +  E ~ ) - ' / ~ ,  

In terms of the cyclotron frequency w, = e%'/ mc, a can be rewritten as 

a =(1+4P2)-"' where P = n / w c  (2.10) 

and takes values in the interval (0, l ) ,  the weak and very strong field limits corresponding 
respectively to values close to 0 or 1 .  

In terms of the creation and annihilation operators vt and &, i = 1,2, defined by 

7 7 1  = ( X a -  i P , ) / f i  6, = ( x ,  + i P , ) / f i  (2.11) 

[ ( I ,  T,I = 81, [TI ,  7?,1=[5. 61 = 0 (2.12) 

and satisfying the boson commutation relations 

the Hamiltonian H can be written as 
2 

H =  (??i&+f)wi. 
i = l  

(2.13) 

Its eigenvalues (and therefore also those of H" in convenient units) are given by 

(2.14) 
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and the corresponding eigenstates are 

(2.15) 

where 10) denotes the boson vacuum state. 
It is well known (Cisneros and McIntosh 1970, Louck er a1 1973a, Moshinsky et 

a1 1975) that accidental degeneracies occur in the spectrum of H if and only if the 
frequency ratio is rational, i.e. 

w 2 / w , =  kIlk2 or klWl= k 2 ~ 2 =  w (2.16) 

where k ,  and k2 are two relatively prime integers. In this case, H has an SU(2) 
symmetry group whose Lie algebra has been constructed by Louck et a1 (1973a). We 
shall now review their analysis with the purpose of extending it to three dimensions 
in the subsequent sections. 

One begins by dividing the set of states (2.15) into k 1 k 2  subsets characterised by a 
pair of indices A = (A lh2)  defined by 

V, = A i  mod k, A,=0 ,1 ,  . . . ,  k , - I  i = 1,2.  (2.17) 

The states belonging to a given subset A are labelled by two non-negative integers n , ,  
n2 as follows: 

(2.18) 

and span a subspace S(A) of Hilbert space S. In terms of n , ,  n2, the eigenvalues (2.14) 
can be rewritten as 

Inln2)A = I n ,  k l +  A I ,  nzk2+ A2) 

(2.19) 

From equation (2.19), it follows that those members of subset A, for which n = n,  + n2 
is the same, are degenerate. Hence each subset A can be put into one-to-one correspon- 
dence with the full set of eigenstates of a two-dimensional isotropic oscillator. 

i = 1,2,  by 
the following relations: 

In each subspace S'"', one next defines new operators f j ; " )  and 

1 / 2  k8 f j?' = k--'I2 I (7115, - -h , )1 '2 [77151(~15, - l )~  * *  (77,5I--k,+1)1- 7 7 1  

E"'= k; ' /25~~[77,5 , (77 ,51-1) .  . . (77,51--k,+1)l-1/2(77,51-h,)1/2. 
(2.20) 

When applied to the states (2.18), these new operators behave as usual creation and 
annihilation operators, since from equation (2.20), one obtains 

(2.21) 

and similar relations for f j y )  and s';". In S'"), V l " )  and f!"), i = 1,2,  therefore satisfy 
commutation relations of the type (2.12). Under transformation (2.20), the restriction 
H'") of H to S") is converted into a two-dimensional isotropic oscillator of 
frequency o 

(2.22) 
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Hence it has an SU(2) symmetry group, whose generators are the traceless operators 
obtained from the operators 

i, j = 1,2 (2.23) c(,+) = - ( A ) - ( * )  
ij ~i 5 j  

satisfying the U(2) commutation relations 

[C$) ,  C‘,:’] = 8jkC:;) - ai,cg (2.24) 

1n.Hilbert space S, one finally introduces projection operators P ( A )  onto the various 
Since P‘”) commutes with H, 9iA’), c$””, the operators 

Ci. =c Cj;’p‘*’ (2.25) 

leave H invariant, connect all its degenerate eigenstates, and satisfy the U(2) commuta- 
tion relations (2.24). The corresponding traceless operators are therefore the generators 
of the SU(2) symmetry group of H. 

Going back to the Hamiltonian H” of the two-dimensional isotropic oscillator in 
a strong magnetic field, we conclude from the above analysis that it does have accidental 
degeneracies, and an associated SU(2) symmetry group for those values of the magnetic 
field intensity X for which the parameter a happens to be rational, meaning that P 
may be written in the form 

P = 4[(4/P)2 - P , 4 E N +  P < 4 *  (2.26) 

The analysis of the two-dimensional problem can easily be extended to three 
dimensions. The Hamiltonian H“ of the three-dimensional problem is given by equation 
(2.1), where the summation over i now goes from 1 to 3. It only differs from the 
Hamiltonian of the two-dimensional problem by the addition of a harmonic oscillator 
of frequency R in the x3  direction, and in atomic units can be written as 

subspaces 

A 

H ‘ = f  [ p : ’ +  ( b 4 +  & ‘ ) x i 2 ] +  b 2 ( x ; p : - x ; p ; )  +:(JIG’+ E ~ X ; ’ ) .  (2.27) 
i = l  

When one performs the linear canonical transformation defined by equation (2.6) and 
by the following relations 

x i  = E - 1 X 3  P; = EP3 (2.28) 
H ’  is converted into the Hamiltonian of a three-dimensional anisotropic oscillator, 
given by equation (2.7) where i now goes from 1 to 3, and the frequencies are 
defined by 

w l = l + ( Y  w z = l - ( Y  w3 = (1 - a y  (2.29) 
To our knowledge, a thorough discussion of the accidental degeneracies and 

symmetry group of the three-dimensional anisotropic oscillator along the lines of the 
Louck et a1 analysis for two dimensions has not been carried out so far although some 
partial results are known (Cisneros and McIntosh 1970) and different analyses are 
available (Major 1977). We shall therefore proceed to fill this gap in 00 3 and 4 before 
going back to the problem of an oscillator in a strong magnetic field in 0 5. 

3. Accidental degeneracies of the three-dimensional anisotropic oscillator 

Let us consider the three-dimensional anisotropic oscillator, whose Hamiltonian is 
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given by 
3 3 

1 = 1  r = l  
H = c w,t (pf+xf )  = c (77,5,+9w, 

where 77, and are defined in equation (2.11). Its eigenstates can be written as 
3 

1 v1 ~ 2 ~ 3 )  = n ( V ,  ! ) - " 2 ~  Y I ~ o )  
1 = 1  

and correspond to the eigenvalues 
3 

E Y , Y * q =  c ( v 1 + t ) W t  V I ,  v2, v3 = 0, 1,2 ,  . . I . 
1 = 1  

(3 .1)  

(3.2) 

(3.3) 

There occur accidental degeneracies in the spectrum if and only if the three 
frequencies wi, i = 1 , 2 , 3  satisfy some relation of the type 

(3.4) 

Without loss of generality, we may assume that ( F , P ~ ~ J . ~ )  is a set of three relatively 
prime integers. Contrary to what happens in the two-dimensional case, equation (3.4) 
may be fulfilled by either one or two different sets of relatively prime integers ( ~ 1 / 1 2 / . ~ 3 ) .  

As shown in fi 4, the resulting accidental degeneracy patterns and symmetry groups 
will then be different. In the remainder of this section, we shall determine the restrictions 
imposed on the frequency ratios w 2 / w 1 ,  w 3 / w I ,  w 3 / w 2  by the existence of one or two 
independent relations of the type (3.4). As a preliminary remark, we note that since 
there are only two independent ratios, then if two of them are rational, so is the third. 

Let us start with the case where equation (3.4) is satisfied by two different sets of 
relatively prime integers ( ~ 1 / ~ 2 ) ( ~ 3 )  and (pik4pi) .  Then p3 and pi cannot simul- 
taneously be equal to zero since w 1  and w2 cannot satisfy two independent relations 
with relatively prime integer coefficients. Without loss of generality, we may assume 
that p3 is different from zero. If pi = 0, then PI, pi  # 0, and the ratio w 2 / w 1  = - p I / ~ . i  
is rational. If on the contrary pi # 0, then we can eliminate w 3  between the two relations 
and write 

(P1Pi-P3Pi)w1+(P2P!! -p3P;)w2 = O. (3.5) 

This condition imposes that either p1kLj - p3pI = k2p i  - p3pi  = 0, or w 2 / w I  is rational. 
Since the first alternative would imply that the two sets (wIp2p3)  and ( p i p i p i )  are 
identical, we again find that w 2 / w 1  must be rational. It can be proved in the same way 
that w 3 / 0 1  is also rational. We conclude that when equation (3.4) is satisfied by two 
different sets of relatively prime integers, the three frequency ratios are rational, i.e. 
k , w ,  = k2w2 = k3w3 where k, ,  k2, k, are three relatively prime integers. The converse 
of this proposition obviously holds too. Note that if k l ,  k t ,  k3 are relatively prime 
integers, they are not necessarily relatively prime per couple. For instance, k ,  = 1 ,  
k2 = 2 and k3 = 2 are relatively prime, but k2 = 2 and k3 = 2 are not. This will complicate 
the discussion in 9 4.1 to a large extent. 

Let us next consider the case where equation (3.4) is satisfied by only one set of 
relatively prime integers. From the above argument, it follows that no two frequency 
ratios can simultaneously be rational. Hence we have to examine the following two 
cases: either with one rational frequency ratio or without. In the former case, equation 
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(3.4) is automatically satisfied by one set of relatively prime integers (p1pzp3) ,  e.g. if 
w 2 / w 1  = k , /  k,, then pl  = k l ,  p2 = - k ,  and p3 = 0 fulfil equation (3.4). In the latter case, 
equation (3.4) is not automatically satisfied but there do exist irrational values of the 
three frequency ratios for which it is fulfilled, e.g. if w z / w l  = 4, w 3 / w ,  = 1 +a and 
o3/o2= (1 +fi)/f i, then p1 = p2=  -p3 = 1 is a solution of equation (3.4). This 
strongly contrasts with the two-dimensional case where accidental degeneracy can only 
occur when the frequencies are rationally related. 

In 0 4, we shall search for symmetry groups explaining the various types of accidental 
degeneracies discussed in the present section. 

4. Symmetry group of the three-dimensional anisotropic oscillator 

4.1. The case of three rational frequency ratios 

When the oscillator frequencies satisfy the relation 

k l w l  = k2w2 = k3w3 = w (4.1) 

where the integers k l ,  k2,  k3 are relatively prime per couple, the Hamiltonian symmetry 
group can easily be obtained by extending to three dimensions the analysis carried 
out for two dimensions in § 2. The set of states (3.2) is divided into klk ,k3  subsets 
characterised by a triplet of indices A = (A,AzA3), defined by equation (2.17) where i 
now goes from 1 to 3. The states belonging to subset A are denoted by 

(4.2) 
and the corresponding eigenvalues by 

l n i n l n 3 ) ~  = Iniki+ A I ,  n2kzS A z ,  n3k3+A3) 

Each subset A can be put into one-to-one correspondence with the full set of eigenstates 
of a three-dimensional isotropic oscillator of frequency w. Hence the Hamiltonian 
symmetry group is SU(3), and its generators are the traceless operators obtained from 
the operators C,,, i , j  = 1,2,3,  whose definition is similar to equation (2.25). 

When the oscillator frequencies satisfy equation (4.1) where k l ,  k,, k3 are not 
relatively prime per couple, some additional degeneracies appear between states belong- 
ing to different subsets A. This is better illustrated by a simple example. If k ,  = 1, 
k,  = k3 = 2, then there are four subsets of states, respectively characterised by A = (000), 
(OOl), (010) and (01 1). The eigenstates corresponding to a given n value and belonging 
to subset (000) (respectively (001)) are degenerate with those corresponding to n - 1 
(respectively n )  and belonging to subset (011) (respectively (010)). Hence there are 
two families of degenerate states, each made of two subsets, [(000), ( O l l ) ]  and 
[ ( O O l ) ,  (OlO)]. In general, denoting by K the least common multiple of k l ,  k,, k3, and 
defining K ,  = K / k , ,  i = 1,2,3,  we can write equation (4.3) as follows: 

3 3 
E ? )  = ( n + K ( A i  + + ) K , )  w = [ n + p + . - I (  q ++ K ~ ) ]  (4.4) 

1 = I  

where 
3 

1 A i ~ i  = p K  + q q = O ,  1 , . . . ,  K-1 .  
i = l  

(4.5) 
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We therefore obtain K families of degenerate states, each characterised by a given q 
value and made of 1 = k ,  k2k3/ K subsets A. 

It is obvious that in such a case, the above defined SU(3) group cannot connect 
all the degenerate eigenstates of the Hamiltonian, hence it is not its symmetry group. 
On the other hand, it is easy to determine the total degeneracy of the energy levels 
taking into account that for any subset A the degeneracy of the level characterised by 
a given n is ( n  + 1 ) (  n + 2)/2. The result is a quadratic polynomial in n, whose highest 
power term is 1n2/2. Such degeneracies are not the dimensions of the irreducible 
representations of any group except when 1=2.  In the latter case, Cisneros and 
McIntosh (1970) already noted that the degeneracies ( n  + 1)2  and ( n  + 1 ) (  n + 2 )  of the 
q = 0 and 1 family levels respectively correspond to the dimensions of the irreducible 
representations (n, 0) and (ni-4,;)  of S0(4) ,  or strictly speaking of the irreducible 
representations j ,  = j 2  = n/2 and j ,  = ( n  + 1)/2, j 2  = n/2 of its universal covering group 
SU(2) x SU(2). They also pointed out that the Ravenhall et al (1967) analysis of the 
isotropic oscillator with an impenetrable wall across the origin might be extended to 
such a case. In the remainder of this subsection, we shall carry out this extension 
along the lines of Louck et a1 (1973a). 

Let us begin with the simplest I = 2 case, corresponding to k,  = 1 ,  k2 = k,  = 2, for 
which 

(4.6) 
The two families respectively characterised by q = 0 and q = 1 span two subspaces S(’) 
and S‘” of Hilbert space. If we set 

E”, Y 2 Y J  = [ V I  + f( v2 + v3) + 1 1 0 .  

V ,  = n - J+4q  v 2 = J + M  v , = J - M  (4.7) 
where J = q / 2 ,  1+q/2  , . . . ,  n + q / 2 ,  and M = - J ,  - J + l , . . . ,  J,  then the ( n + l ) x  
( n  + 1 + q )  eigenstates 

(4.8) 
belonging to S‘q’ and corresponding to a given n value, are degenerate since equation 
(4.6) now reads 

(4.9) 
Denoting by J , , ,  J2,, i = 1,2,3,  the SU(2) x SU(2) generators, and by J, = J , ,  + J 2 , ,  

K ,  = Jl, - J2,, i = 1,2,3,  those of the locally isomorphic SO(4) group, we immediately 
obtain from equation (4.8) that 

(4.10) J+ = J ,  + iJ2 = v25, 
The remaining SO(4) generators can be written as 

KL4’ = K(4’ + j K y  = - a q ( N , 2 ) 7 7 : 5 i + r I i 5 : ( y q ( N , ~ t ) + P q ( N , ~ ) J +  

I (  n + iq ,  4q )JM)  = 1 n - J + is, J + M ,  J - M )  

E?’ = ( n  + 1 + q/2)w. 

J - J  -1 J- = J, - i J 2  = q3& 0 -  3 - 2 ( 7 ) 2 5 2 - 7 7 3 5 3 ) .  

(4.11) 
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The coefficients a , ( N , 2 )  and / 3 , ( N , 2 )  in equation (4.11) have been determined in 
order that the operators KI” have the known SO(4) generator matrix elements 
(Biedenharn 1961) when taken between two states (4.8) corresponding to given n and 
q values. In each of the subspaces S‘O’ and S“) ,  the corresponding SO(4) algebra 
connects all the degenerate eigenstates. Hence a construction similar to that given in 
equation (2.25) leads to the generators J,, Ki, i = 1,2,3,  of the total Hamiltonian SO(4) 
symmetry group. 

It is now straightforward to show that the remaining 1 = 2 cases can be reduced to 
the one discussed above. Without loss of generality, we may assume that the common 
factor 2 is contained in k2 and k,, and set k, = kl, k2 = 2k;, k3 = 2ki, where the integers 
ki, k;, and k; are relatively prime per couple. Then equation (3 .3)  reads 

(4.15) 

and there are 2k’,kikj families of degenerate states, each made of two subsets A. 
Instead of dividing the set of states (3.2) into 4k‘,kjk; subsets A as in equation (4.2), 
let us first separate them into kikik; subsets characterised by a triplet of indices 
A ’ =  ( A i A k A i )  defined by 

vi = A i  mod k: A {  = 0, 1 ,  . . . , k{ - 1 i = 1 ,  2 ,3 .  (4.16) 

The states belonging to a given subset A ’  are labelled by three non-negative integers 
vi, vi, vs as follows: 

I v i  v;v;}*,= 1 ki  + A {, v;ki+ A i ,  vik; + A;) (4.17) 

and span a subspace S‘”” of Hilbert space. The corresponding eigenvalues now read 

(4.18) 

and only differ from equation (4.6) by an irrelevant constant. In S‘” ), new creation 
and annihilation operators 9:“ I, i!” ), I = 1 ,2 ,3 ,  are defined by equation (2.20) where 
k, and A,  are replaced by k: and A :  respectively. Each subspace S(A ) is then divided 
into the direct sum of two subspaces S‘” ’), q = 0, 1 ,  whose states are defined by equation 
(4.8) with \ v { v S ~ ; } ~  substituted for )v1v2v3). In each of the 2k;k;kj subspaces S‘” ‘), 
we can construct SO(4) generators JI” ‘I, KIA ‘I, i = 1,2,3,  by replacing v,, 6, by f j j ”  I, 
f!” ’ in equations (4.10)-(4.14). The total Hamiltonian symmetry group is finally 
obtained by a procedure similar to equation (2.25). 

4.2. The case of only one rational frequency ratio 

Without loss of generality, we may assume that 

klWl= kZu2 = = w (4.19) 

where k,  and k, are two relatively prime integers, and 6 is irrational. For any fixed 
non-negative integer value of v3, the eigenstates 1 v1 vzv3) have the accidental degeneracy 
pattern of the two-dimensional oscillator with a rational frequency ratio w 2 / w ,  = k,/ k,. 
Hence the Hamiltonian has an SU(2) symmetry group whose generators can be obtained 
from an equation similar to equation (2.25). 
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4.3. The case of no rational frequency ratio 

Let us assume that the frequencies are not rationally related, but satisfy equation (3.4) 
for some triplet of relatively prime integers ( / ~ I p + 3 ) .  Without loss of generality, we 
may suppose that p1 and p, are positive and p3 negative. Equation (3.4) then reads 

(4.20) P I 01 + 11202 = I p 3 I  0 3 .  

The simplest relation of this type is 

~ 1 +  0 2  = 03 (4.21) 

corresponding to p ,  = p2 = 1p31 = 1 .  We shall determine the Hamiltonian symmetry 
group in three steps: first reduce the study of the general case (4.20) to that of the 
special one (4.21), then find the Hamiltonian symmetry group in the latter case, and 
finally go back to the general case and determine the corresponding Hamiltonian 
symmetry group. 

Let us first pass from the Hamiltonian (3 .1)  to an oscillator Hamiltonian whose 
frequencies U : ,  i = 1 , 2 , 3 ,  satisfy the following relation: 

w ; + w ; = w ;  where w :  = IPCLIIWI i = 1 , 2 , 3 .  (4.22) 

For this purpose, let us divide the set of states (3.2) into p1p21p31 subsets, characterised 
by a triplet of indices A = ( A l h Z A 3 ) ,  defined by equation (2.17) where k, is replaced by 
Ip,/ and i goes from 1 to 3 .  The states belonging to subset A are labelled by three 
non-negative integers vi, us, vi, denoted by 

I V ; Z ’ ; V ~ ) A  =IvIFI+AI, v’+z+Az, v;Ip3I+A3). (4.23) 

Their eigenvalues are given by 

(4.24) 

Under transformation (2.20) where k, is replaced by Ipil and i goes from 1 to 3, the 
restriction H‘”’ of H to the subspace S‘“’  spanned by the states (4.23) is transformed 
into an oscillator of frequencies w : ,  i = 1 , 2 , 3 ,  satisfying equation (4.22): 

(4.25) 

This completes the first step of our analysis. 
Turning ourselves to the determination of the symmetry group of H‘”’, we note 

that those members of the set (4.23), for which both vi + U; and vi+ vi have given 
values, are degenerate with a degeneracy equal to min( vi + vi, vi + vi) + 1. Let us 
further divide the set (4.23) into an infinite number of subsets, each characterised by 
a given integer value of 

A ’ =  V I - - ‘  1 2.  (4.26) 
The states belonging to a given subset span a subspace S““, where A = AA‘, and are 
labelled by two non-negative integers n,, n, as follows: 

(4.27) inInz},, = /n ,+$( iA‘I+h’) ,  n, + $ ( / A ’ /  - A ’ ) ,  n2),,. 
Since their eigenvalues are 

E y ’ =  n ( o i  + U ; )  + c(*)  n = n ,  + n2 (4.28) 
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where 
3 = ; ( I A ’ (  + A ‘ ) ~ ; + : ( ~ A ’ \  - A ’ ) ~ ; +  ( A ,  +4)wi (4.29) 

the states (4.27) can be put into one-to-one correspondence with the eigenstates of a 
two-dimensional isotropic oscillator of frequency o; + oh. 

i = l  

The restriction H(*) of If(”) can be transformed into such an oscillator 

H(*) ( jl < : A ) p ) ( o ;  + U; )+  dA) (4.30) 

by introducing in S(A) new creation and annihilation operators <!*I, i?), i = 1,2, 
defined by 

< \ A )  = J Z ( i j ? ) < \ A ) +  i j ~ ) ~ 2 A ) + I A ~ I ) - I / 2 i j j * ) i j r )  

It is straightforward to check that their action on the states (4.27) is given by 

(4.31) 

(4.32) 

and similar relations for and &*); hence, in #*I, they satisfy boson commutation 
relations of the type (2.12). The symmetry group of H(*) is therefore an SU(2) group, 
whose generators are the traceless operators obtained from 

c ( A j  [j = vi  - ( A )  5, *(A) i, j = 1,2. (4.33) 

Finally going back to the original Hamiltonian H, by an argument similar to that 
used in 0 2, we conclude that it has an SU(2) symmetry group, generated by the traceless 
operators obtained from 

(4.34) 

where P(*’ is the projection operator onto S(*) .  The existence of such an SU(2) 
symmetry group for irrationally related frequencies satisfying equation (3.4) is a 
distinctive feature of the three-dimensional anisotropic oscillator as compared with 
the two-dimensional one. To our knowledge, it has not been reported so far in the 
literature. 

5. Symmetry group of the three-dimensional oscillator in a strong magnetic field 

To determine the symmetry group of the three-dimensional oscillator in a strong 
magnetic field in terms of the parameter a, and ultimately of the ratio p between the 
oscillator and cyclotron frequencies, it only remains to combine the analysis of 0 4 
with equations (2.29) and (2.10). The results are summarised in table 1. 

In conclusion, for those p values for which accidental degeneracies appear in the 
spectrum, either the latter are due to an SU(2), an SU(3) or an SU(2) x SU(2) symmetry 
group, or they cannot be explained by the existence of any symmetry group. Whenever 
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Table 1, Symmetry group of the three-dimensional oscillator in a strong magnetic field in 
terms of the number of rational frequency ratios of the associated three-dimensional 
anisotropic oscillator. The frequencies of the latter are w ,  = 1 +a, w2 = 1 - a, w 3  = 
(1-a2)1’2, where a =(1+4P2)-” ,and P = n / w , .  Here I =  k , k , k , / K ,  where K is theleast 
common multiple of the three relatively prime integers k,, k,, k, .  In the case of zero 
rational frequency ratio, two examples are listed. 

Rational 
frequency Symmetry 
ratios Conditions on a Conditions on P group Comments 

3 0, (1 - a 2 ) 1 ’ 2 ~  Q P , ( 1 + 4 p 2 ) 1 ’ 2 ~  Q SU(3) k , w l = k z w 2 = k 3 w 3  I = 1  
SU(2) x SU(2) I = 2 
- k , w ,  = k2w2 = k,w, I > 2 

k ,w ,  = k2w2 = k3w3 

1 a~ Q, ( l - a 2 ) 1 ’ 2 E  Q P E  Q,(1+4p2)1’2~ Q SU(2) 
0 some a I? Q some P E or E Q SU(2) 1, PP1 = 0 

e.g. a s  Q, P, (1  +4P2)1’2E 0 ,  P 2 I P l =  1 

or a, (1 - a2)”2E Q, 

PLI E 

( I - ( I~)”~EQ p(1+4p2)-1’2~ Q P3/p1=-2(1 +4P2)”’/P 
p E Q, (1 +4P2)”,g Q P2IPI = - 1  

(1 - a2)” ’ /a  E Q @31p1=-1/P 

p is close to one of such distinguished values, the non-degenerate eigenstates cluster 
into nearly degenerate multiplets, and we obtain an approximate symmetry group if 
an exact one is associated with the distinguished p value under consideration. 

The classical limit of the quantum problem discussed in the present paper only 
retains part of the latter complexity. On the one hand, any classical anisotropic 
oscillator has an SU(3) symmetry group whatever the frequencies may be (Cisneros 
and McIntosh 1970). Hence, contrary to the quantum oscillator in a strong magnetic 
field, the classical one has an SU(3) symmetry group for any ,B value. On the other 
hand, the non-bijectiveness of the various canonical transformations used in the 
quantum picture, that is responsible for the complicated form of the symmetry group 
generators, has a counterpart in the classical picture, consisting in a Riemann sheet 
structure of phase space (Kramer et a1 1978, Moshinsky and Seligman 1981). 

Finally, it may be noted that the present analysis could be easily extended to 
an isotropic or anisotropic oscillator in crossed electric and magnetic fields (Schuh 
1985). 
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